On Representations of Toroidal Lie Algebras
نویسنده
چکیده
I gave two talks on some of my results on toroidal Lie algebras in the conference Functional Analysis VIII held in Dubrovnik, Croatia in June 2003. But these results have been submitted to research journals and will appear soon. So I decided to write an expository article on Toroidal Lie Algebras covering my results for the proceedings of Functional Analysis VIII. I will introduce the definitions of toroidal Lie algebras and also the generalized Virasoro algebra in the introduction below. In the main body of the article I will state most of the recent results on representations of toroidal Lie algebras with finite dimensional weight spaces. Toroidal Lie algebras are n-variable generalizations of the well known affine Kac-Moody Lie algebras. The affine Kac-Moody Lie algebra, which is the universal central extension of Loop algebra, has a very rich theory of highest weight modules and some of their characters admit modular properties. The level one highest weight integrable modules has been constructed explicitly on the Fock space through the use of vertex operators (see [FK];
منابع مشابه
Universal Central Extension of Current Superalgebras
Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras are very impo...
متن کاملA category of modules for the full toroidal Lie algebra . Yuly Billig
Toroidal Lie algebras are very natural multi-variable generalizations of affine Kac-Moody algebras. The theory of affine Lie algebras is rich and beautiful, having connections with diverse areas of mathematics and physics. Toroidal Lie algebras are also proving themselves to be useful for the applications. Frenkel, Jing and Wang [FJW] used representations of toroidal Lie algebras to construct a...
متن کاملct 2 00 9 Representations of toroidal extended affine Lie algebras
We show that the representation theory for the toroidal extended affine Lie algebra is controlled by a VOA which is a tensor product of four VOAs: a sub-VOA V + Hyp of a hyperbolic lattice VOA, affine ˙ g and sl N VOAs and a Virasoro VOA. A tensor product of irre-ducible modules for these VOAs admits the structure of an irreducible module for the toroidal extended affine Lie algebra. We also sh...
متن کاملMonomial Irreducible sln-Modules
In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.
متن کاملPrincipal Vertex Operator Representations For Toroidal Lie Algebras
Vertex operators discovered by physicists in string theory have turned out to be important objects in mathematics. One can use vertex operators to construct various realizations of the irreducible highest weight representations for affine Kac-Moody algebras. Two of these, the principal and homogeneous realizations, are of particular interest. The principal vertex operator construction for the a...
متن کامل